Author:
Kireeva Irina V.,Chumlyakov Yuriy I.,Pobedennaya Zinaida V.,Vyrodova Anna V.,Saraeva Anastasia A.
Abstract
The main disadvantage of fcc (face-centred cubic lattice) high-entropy alloys is the low stress level at the yield point (σ0.1) at a test temperature above room temperature. This restricts their practical application at high test temperatures from 773 K to 973 K. In this study, we found that a high stress level was reached at the yield point σ0.1 ≈ G/100–G/160 (G is the shear modulus) of the [001]- and [1¯44]-oriented crystals of the Co23.36Cr23.29Fe23.80Ni21.88Al7.67 (Al0.3CoCrFeNi) high-entropy alloy (HEA) within a wide temperature range of 77–973 K under tension, due to the occurrence, of nanotwins, multipoles, dislocations under plastic deformation at 77 K and the subsequent precipitation of ordered L12 and B2 particles. It was shown that grain boundaries are not formed and the samples remain in a single-crystal state after low-temperature deformation and subsequent ageing at 893 K for 50 h. Achieving a high-strength state in the Al0.3CoCrFeNi HEA single crystals induces the orientation dependence of the critical resolved shear stresses (τcr) at T ≥ 200 K (τcr[1¯44] > τcr[001]), which is absent in the initial single-phase crystals, weakens the temperature dependence of σ0.1 above 573 K, and reduces plasticity to 5–13% in the [1¯44] orientation and 15–20% in the [001] orientation.
Funder
Russian Science Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献