Abstract
In this investigation, the fine-grained bauxite ore flotation was conducted in a plate-packed flotation column. This paper evaluated the effects of packing-plates on recovering fine bauxite particles and revealed the fundamental mechanisms. Bubble coalescence and break-up behaviors in the packed and unpacked flotation columns were characterized by combining Computational Fluid Dynamics (CFD) and Population Balance Model (PBM) techniques. Flotation experiments showed that packing-plates in the collection zone of a column can improve bauxite flotation performance and increase the smaller bauxite particles recovery. Using packing-plates, the recovery of Al2O3 increased by 2.11%, and the grade of Al2O3 increased by 1.85%. The fraction of −20 μm mineral particles in concentrate increased from 47.31% to 54.79%. CFD simulation results indicated that the packing-plates optimized the bubble distribution characteristics and increased the proportion of microbubbles in the flotation column, which contributed to improving the capture probability of fine bauxite particles.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of Central South University
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献