Hot Deformation Behaviour of Mn–Cr–Mo Low-Alloy Steel in Various Phase Regions

Author:

Schindler IvoORCID,Opěla PetrORCID,Kawulok PetrORCID,Sojka Jaroslav,Konečná KateřinaORCID,Rusz Stanislav,Kawulok RostislavORCID,Sauer Michal,Turoňová Petra

Abstract

The deformation behaviour of a coarse-grained as-cast medium-carbon steel, alloyed with 1.2% Mn, 0.8% Cr and 0.2% Mo, was studied by uniaxial compression tests for the strain rates of 0.02 s−1–20 s−1 in the unusually wide range of temperatures (650–1280 °C), i.e., in various phase regions including the region with predominant bainite content (up to the temperature of 757 °C). At temperatures above 820 °C, the structure was fully austenitic. The hot deformation activation energies of 648 kJ·mol−1 and 364 kJ·mol−1 have been calculated for the temperatures ≤770 °C and ≥770 °C, respectively. This corresponds to the significant increase of flow stress in the low-temperature bainitic region. Unique information on the hot deformation behaviour of bainite was obtained. The shape of the stress-strain curves was influenced by the dynamic recrystallization of ferrite or austenite. Dynamically recrystallized austenitic grains were strongly coarsened with decreasing strain rate and growing temperature. For the austenitic region, the relationship between the peak strain and the Zener–Hollomon parameter has been derived, and the phenomenological constitutive model describing the flow stress depending on temperature, true strain rate and true strain was developed. The model can be used to predict the forming forces in the seamless tubes production of the given steel.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3