Modeling of the Evolution of the Microstructure and the Hardness Penetration Depth for a Hypoeutectoid Steel Processed by Grind-Hardening

Author:

Guo Yu,Liu Minghe,Yin Mingang,Yan Yutao

Abstract

Grind-hardening processing is an emerging approach that combines the grinding and surface quenching process. During the process, the hardened layer—mainly martensite—is produced on the surface of the workpiece to achieve the purpose of surface strengthening. Above all, the surface temperature field of the hypoeutectoid-1045 steel workpiece was determined by finite element method for fully revealing the formation mechanism of the hardened layer. Further, the cellular automata approach was applied to dynamically simulate the transformation of both austenitization and martensitization from the initial microstructure. The hardness penetration depth was also predicted. Finally, a grind-hardening experiment was conducted to assess the theoretical study. Results showed that a combination of the finite element method and the cellular automata approach can effectively simulate the microstructure transformation of hardened layer. The microstructure and the hardness penetration depth were affected by the maximum grinding temperature and the heating rate. Research on the influence of grinding parameters showed that the hardness penetration depth increased as the depth of the wheel cut and feeding speed increased. Experiments revealed that the difference between predicted value and experimental value of the hardness penetration depth varied between 2.83% and 7.31%, which confirmed the effectiveness of the predicted model.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3