Biochar Application Improved Sludge-Amended Landscape Soil Fertility Index but with No Added Benefit in Plant Growth

Author:

Chu Shuangshuang1,Xiao Mengrui1,Peng Weixin2,Long Fengling2,Wu Daoming2,Hu Dongnan1,Zeng Shucai2

Affiliation:

1. College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China

2. College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China

Abstract

Co-application of sewage sludge (SS) with biochar in landscape/forestry soil is a common strategy for enhancing soil fertility and reducing the bioavailability of potential toxic elements (PTEs) derived from SS, such as Cd, Pb, Cu, Zn, and Ni. However, due to variability of biochar quality and uncertainties in responses of different plant species, whether the co-application benefits the landscape/forestry plant system remains elusive. Here, we tested the effectiveness of three types of biochar (SS-derived biochar (SB), rice straw-derived biochar (RB), and litter-derived biochar (LB)), which were added to soil amended with SS at 50% (w/w) at rates of 1.5%, 3%, and 4.5% as growth media for the landscape plant Aglaonema modestum (A. modestum). We analyzed the substrate’s physicochemical properties and assessed the alleviation of phytotoxicity by biochar application. A significant increase in the fertility index of substrate was observed in all the treatments with biochar addition. The addition of biochar reduced the potential mobility of PTEs while increasing their residual fraction in media. Nonetheless, it has been found that the addition of biochar has ineffective or even negative effects on A. modestum growth (height, biomass, root length) and nutrient absorption. Importantly, the reduction in root biomass and the increased activity of root antioxidant enzymes (SOD, POD, CAT, and MDA) indicate contamination stress of biochar on the roots of A. modestum. Toxic elements of concern—namely Cu, Cd, and Pb—were not significantly higher in tissues of A. modestum saplings planted in biochar-SS-amended soil. However, elevated levels of other elements that may pose toxicity concerns, such as Ni and Zn, increased in tissues at high biochar dosages. Based on the Entropy–Weight TOPSIS method, it was further confirmed that compared to the treatment without biochar, all treatments except for 3.0% LB application resulted in poorer A. modestum comprehensive growth. Our results emphasize the need for detailed research on the response of specific plants to biochar in specific environments, including plant adaptability and the unexplored toxicity of biochar, to understand the large variations and mechanisms behind these ineffective or negative effects before the large-scale co-utilization of SS and biochar in landscape/forestry soils.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Forestry Science and Technology Innovation Project of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3