Control Technology of Soft Rock Floor in Mining Roadway with Coal Pillar Protection: A case study

Author:

Jia Housheng,Wang Luyao,Fan Kai,Peng Bo,Pan Kun

Abstract

This study considered the mining roadway with coal pillar protection in the fully mechanized caving face of the Dananhu No.1 Coal Mine, China. Theoretical analysis, numerical simulation, and field tests were conducted, and the stress environment, deformation, and failure characteristics of the mining roadway in the fully mechanized caving face were analyzed. The results revealed that the intrinsic cause for the large asymmetrical floor deformation in the mining roadway is the asymmetrical phenomenon of the surrounding rock’s stress environment, caused by mining. This also results in the non-uniform distribution of the mining roadway floor’s plastic zone. The degree of asymmetrical floor heave is internally related to the thickness of the caving coal. When the thickness of the caving coal was in the range of 5.9 m, the deformation of the asymmetrical floor heave, caused by the plastic failure in the floor, became more obvious as certain parameters increased. As the rotation angle of the principal stress direction increased, the maximum plastic failure depth position of the floor gradually moved toward the middle of the roadway. This caused a different distribution for the maximum deformation position. The control of the floor heave deformation was poor, and it was not feasible to use high-strength support under the existing engineering conditions. Hence, the control should mainly be applied to the floor heave deformation. When the thickness of the caving coal was more than 5.9 m, the main roof strata was prone to instability and being cut along the edge of the coal pillar; the rock stress environment surrounding the roadway tended to revert back to the initial geostress state. The proposed floor heave control strategy achieved good results, and as the deformation of the floor heave decreased, the workload of the floor heave was also greatly reduced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Ground Control of Roadways;Hou,2013

2. Partitioning characteristics of gas channel of coal-rock mass in mining space and gas orientation method

3. Occurrence mechanism and control technology of the floor heave disaster for soft-rock tunnel;Zhong;Disaster Adv.,2012

4. Strain energy analysis of floor heave in longwall gateroads

5. An experimental study of the vibration of a drill rod during roof bolt installation

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3