Modeling Directional Brightness Temperature (DBT) over Crop Canopy with Effects of Intra-Row Heterogeneity

Author:

Du YongmingORCID,Cao Biao,Li Hua,Bian ZunjianORCID,Qin Boxiong,Xiao Qing,Liu QinhuoORCID,Zeng YijianORCID,Su Zhongbo

Abstract

In order to improve the simulation accuracy of directional brightness temperature (DBT) and the retrieval accuracy of component temperature, a model considering intra-row heterogeneity to simulate the DBT angular distribution over crop canopy is proposed. At individual scale, the probability of leaf appearance is inversely proportional to the distance from central stem. On the basis of this assumption, we formulated leaf area volume density (LAVD) spatial distribution at three hierarchical scales: individual scale, row scale, and scene scale. The equations for directional gap probability and bi-directional gap probability were modified to adapt the heterogeneity of row structure. Afterwards, a straightforward radiative transfer model was built based on the gap probabilities. A set of simulated data was generated by the thermal radiosity-graphics combined model (TRGM) as the benchmark to evaluate both forward simulation and inversion ability of the new model; we compared the new DBT model against an existing model assuming row as homogeneous box. With the growth of crops, the canopy structure of row crops will gradually change from row structure to continuous canopy. The new DBT model agreed with the TRGM model much better than the homogeneous row model at the middle stage of the crop growth season. The new model and the homogeneous row model achieve similar accuracy at early stage and end stage. At the middle growth stage, the new model can improve the accuracy of soil temperature retrieval. We recommend the new DBT model as an option to improve the DBT simulation and component temperature retrieval for row-planted crop canopy. In particular, the more accurate component temperatures during the middle growth stage are fundamentally important in characterizing crop water status, evapotranspiration, and soil moisture, which are subsequently critical for predicting crop productivity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3