Abstract
The complementary nature of different modalities and multiple bands used in remote sensing data is helpful for tasks such as change detection and the prediction of agricultural variables. Nonetheless, correctly processing a multi-modal dataset is not a simple task, owing to the presence of different data resolutions and formats. In the past few years, graph-based methods have proven to be a useful tool in capturing inherent data similarity, in spite of different data formats, and preserving relevant topological and geometric information. In this paper, we propose a graph-based data fusion algorithm for remotely sensed images applied to (i) data-driven semi-unsupervised change detection and (ii) biomass estimation in rice crops. In order to detect the change, we evaluated the performance of four competing algorithms on fourteen datasets. To estimate biomass in rice crops, we compared our proposal in terms of root mean squared error (RMSE) concerning a recent approach based on vegetation indices as features. The results confirm that the proposed graph-based data fusion algorithm outperforms state-of-the-art methods for change detection and biomass estimation in rice crops.
Subject
General Earth and Planetary Sciences
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献