Graph-Based Data Fusion Applied to: Change Detection and Biomass Estimation in Rice Crops

Author:

Jimenez-Sierra David AlejandroORCID,Benítez-Restrepo Hernán DaríoORCID,Vargas-Cardona Hernán Darío,Chanussot JocelynORCID

Abstract

The complementary nature of different modalities and multiple bands used in remote sensing data is helpful for tasks such as change detection and the prediction of agricultural variables. Nonetheless, correctly processing a multi-modal dataset is not a simple task, owing to the presence of different data resolutions and formats. In the past few years, graph-based methods have proven to be a useful tool in capturing inherent data similarity, in spite of different data formats, and preserving relevant topological and geometric information. In this paper, we propose a graph-based data fusion algorithm for remotely sensed images applied to (i) data-driven semi-unsupervised change detection and (ii) biomass estimation in rice crops. In order to detect the change, we evaluated the performance of four competing algorithms on fourteen datasets. To estimate biomass in rice crops, we compared our proposal in terms of root mean squared error (RMSE) concerning a recent approach based on vegetation indices as features. The results confirm that the proposed graph-based data fusion algorithm outperforms state-of-the-art methods for change detection and biomass estimation in rice crops.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3