An Improved Frequency-Domain Image Formation Algorithm for Mini-UAV-Based Forward-Looking Spotlight BiSAR Systems

Author:

Zeng Tao,Wang Zhanze,Liu Feifeng,Wang Chenghao

Abstract

Mini-unmanned aerial vehicle (UAV)-based bistatic forward-looking synthetic aperture radar (SAR) (mini-UAV-based BFSAR) is much more attractive than the monostatic one because of the flexibility of the system geometry selection as well as its simplicity of system operation, especially with the mini-UAV platform. However, the trajectory of the mini-UAV needs to be accurately modeled since it is very sensitive to the external environment, and the forward-looking configuration results in more severe spatial variance in image formation processing. In the paper, an improved frequency-domain imaging algorithm based on a very accurate slant range model is proposed for mini-UAV-based BFSAR with spotlight illumination. First, a more accurate slant range expression considering the motion characteristics of the UAV and bistatic spotlight configuration is re-derived. Second, a new range nonlinear chirp scaling (NLCS) operator was derived based on the accurate bistatic slant range model. Third, an improved azimuth NLCS operator in the Doppler frequency domain was established for the spotlight illumination of the transmitter and receiver in mini-UAV based BFSAR systems. Finally, the proposed algorithm is validated by both simulations and real datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3