Combining Interior Orientation Variables to Predict the Accuracy of Rpas–Sfm 3D Models

Author:

Capolupo Alessandra,Saponaro MirkoORCID,Borgogno Mondino EnricoORCID,Tarantino EufemiaORCID

Abstract

Remotely piloted aerial systems (RPAS) have been recognized as an effective low-cost tool to acquire photogrammetric data of low accessible areas reducing collection and processing time. Data processing techniques like structure from motion (SfM) and multiview stereo (MVS) techniques, can nowadays provide detailed 3D models with an accuracy comparable to the one generated by other conventional approaches. Accuracy of RPAS-based measures is strongly dependent on the type of adopted sensors. Nevertheless, up to now, no investigation was done about relationships between camera calibration parameters and final accuracy of measures. In this work, authors tried to fill this gap by exploring those dependencies with the aim of proposing a prediction function able to quantify the potential final error in respect of camera parameters. Predictive functions were estimated by combining multivariate and linear statistical techniques. Four photogrammetric RPAS acquisitions were considered, supported by ground surveys, to calibrate the predictive model while a further acquisition was used to test and validate it. Results are preliminary, but promising. The calibrated predictive functions relating camera internal orientation (I.O.) parameters with final accuracy of measures (root mean squared error) showed high reliability and accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3