Coupled Higher-Order Tensor Factorization for Hyperspectral and LiDAR Data Fusion and Classification

Author:

Xue ZhaohuiORCID,Yang Sirui,Zhang Hongyan,Du Peijun

Abstract

Hyperspectral and light detection and ranging (LiDAR) data fusion and classification has been an active research topic, and intensive studies have been made based on mathematical morphology. However, matrix-based concatenation of morphological features may not be so distinctive, compact, and optimal for classification. In this work, we propose a novel Coupled Higher-Order Tensor Factorization (CHOTF) model for hyperspectral and LiDAR data classification. The innovative contributions of our work are that we model different features as multiple third-order tensors, and we formulate a CHOTF model to jointly factorize those tensors. Firstly, third-order tensors are built based on spectral-spatial features extracted via attribute profiles (APs). Secondly, the CHOTF model is defined to jointly factorize the multiple higher-order tensors. Then, the latent features are generated by mode-n tensor-matrix product based on the shared and unshared factors. Lastly, classification is conducted by using sparse multinomial logistic regression (SMLR). Experimental results, conducted with two popular hyperspectral and LiDAR data sets collected over the University of Houston and the city of Trento, respectively, indicate that the proposed framework outperforms the other methods, i.e., different dimensionality-reduction-based methods, independent third-order tensor factorization based methods, and some recently proposed hyperspectral and LiDAR data fusion and classification methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Open Research Found of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3