Abstract
Research on selenium pollution in natural waters is continuous and discouraging. In this study, coagulation/precipitation was applied with the use of Fe(II), Fe(III), and poly-aluminum chloride (PACl) salts for Se(IV) removal at concentration range 10–100 μg Se(IV)/L that is commonly found in drinking waters. Prehydrolyzed Fe(III)-FeCl3 delivered the best uptake capacity (Q10 = 8.9 mg Se(IV)/g Fe(III) at pH 6) at the residual concentration equal to the drinking water regulation limit of 10 μg/L. This was much higher than the efficiencies achieved when applying the other coagulants: i.e., Q10 = 7.3 mg Se(IV)/g Fe3+-FeClSO4, Q10 = 6.4 mg Se(IV)/g prehydrolyzed Fe(III)-Fe2(SO4)3 and 0.7 mg Se(IV)/g Al-PACl at pH 6, and Q10 = 0.45 mg Se(IV)/g Fe(II) at pH 7.2. Comparing the different sources of Fe(III), it is apparent that Se(IV) uptake capacity is inhibited by the presence of SO42− in crystal structure of prehydrolyzed Fe2(SO4)3, while prehydrolyzed FeCl3 favors Se(IV) uptake. Temperature effect data showed that coagulation/precipitation is exothermic. In techno-economic terms, the optimal conditions for Se(IV) removal are coagulation/precipitation at pH values lower than 7 using prehydrolyzed Fe(III)-FeCl3, which provides a combination of minimum sludge production and lower operating cost.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献