Abstract
This review discusses Legionella, among the most prolific and publicly well-known waterborne pathogens, and advances in potential treatment technologies. The number of cases associated with Legionella continues to rise, as does its public awareness. Currently, cases associated with premise plumbing account for the largest number of legionellosis cases in the United States. So, while it is important to understand Legionella as such, it is also important to investigate how to treat drinking water in premise plumbing for Legionella and other waterborne pathogens. While there are currently several methods recognized as potential means of inactivating waterborne pathogens, several shortcomings continue to plague its implementation. These methods are generally of two types. Firstly, there are chemical treatments such as chlorine, chlorine dioxide, monochloramine, ozone, and copper-silver ionization. Secondly, there are physical treatments such as thermal inactivation and media filtration. Their shortcomings range from being labor-intensive and costly to having negative health effects if not properly operated. Recently developed technologies including ultraviolet (UV) irradiation using light emitting diodes (LEDs) and innovative carbon nanotube (CNT) filters can better control waterborne pathogens by allowing for the simultaneous use of different treatment measures in plumbing systems.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献