Experimental Study on the Solidification of Uranium Tailings and Uranium Removal Based on MICP

Author:

Hu Lin12,Zhang Zhijun12,Wu Lingling12ORCID,Yu Qing12,Zheng Huaimiao3,Tian Yakun12ORCID,He Guicheng12

Affiliation:

1. School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China

2. Hunan Province Engineering Technology Research Center for Disaster Prediction and Control on Mining Geotechnical Engineering, Hengyang 421001, China

3. School of Economics, Management and Law, University of South China, Hengyang 421001, China

Abstract

The governance of uranium tailings aims to improve stability and reduce radionuclide uranium release. In order to achieve this goal, the uranium removal solution test and uranium tailings grouting test were successively carried out using microbially induced calcium carbonate precipitation (MICP) technology. The effect of MICP on the reinforcement of uranium tailings and the synchronous control of radionuclide uranium in the tailings were discussed. The solution test results show that Sporosarcina pasteurii could grow and reproduce rapidly in an acidic medium with an initial pH of 5. The uranium concentration decreased with the increase in MICP reaction time, and the removal efficiency reached 60.9% at 24 h. In the solidification test of tailings, the strength of tailings improved significantly after 12 days of reinforcement, with an increase in the cohesion of tailings by 2.937 times and an increased internal friction angle of 8.393°. The peak stress value of solidified tailings at the surrounding pressure of 50 kPa increased by 1.87 times, and the uranium concentration in the discharge fluid decreased by 76.91% compared to the blank group. This study provides valuable insights and references for safely disposing of uranium tailings.

Funder

Research Foundation of Education Bureau of Hunan Province

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hengyang City Science and Technology Program Project Funding

Hunan Province’s technology research project “Revealing the List and Taking Command”

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3