Assessing the Photovoltaic Power Generation Potential of Highway Slopes

Author:

Han Zhenqiang12ORCID,Zhou Weidong1,Sha Aimin12,Hu Liqun12,Wei Runjie1

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

2. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China

Abstract

The solar photovoltaic (PV) power generation system (PGS) is a viable alternative to fossil fuels for the provision of power for infrastructure and vehicles, reducing greenhouse gas emissions and enhancing the sustainability of road transport systems. A highway slope is generally an idle public area with high accessibility, which is the ideal application scenario for a PV PGS. The assessment of PV power generation potential (PGP) is key for the planning and design of PV PGS projects. Previous approaches to potential assessments are mainly based on digital maps and image processing techniques, which do not fully consider the impacts of the highway orientation, the slope geometric characteristics, and the PV panel placement scheme on the evaluation results. Therefore, this study proposes an assessment method for the PV PGP on highway slopes using the design or calculated highway and slope geometric parameters and the solar radiation received by PV panels under the desirable placement scheme. Highway segmentation and geometric parameter calculation methods were established, and the optimal PV array placement schemes for typical slope orientations were determined by simulating the PV power generation in the software PVsyst (version 7.2). Afterwards, the theoretical PGP could be calculated using the received solar radiation and the available slope area. By subtracting the energy loss caused by temperature changes, the operation of inverters, and the PV modules’ performance decay, the actual PV PGP could be obtained. Finally, a case study of the solar PGP assessment of a 1.97 km long highway section is provided, and the feasibility of the proposed method is verified.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3