Carbon Emission Efficiency and Reduction Potential Based on Three-Stage Slacks-Based Measure with Data Envelopment Analysis and Malmquist at the City Scale in Fujian Province, China

Author:

Wu Tingting12,Chen Junjun2,Shi Chengchun2,Yang Guidi1

Affiliation:

1. Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Provincial Key Laboratory of Environmental Engineering, Fujian Academy of Environmental Sciences, Fuzhou 350013, China

Abstract

Increased carbon emissions led to extreme weather, global warming, and other environmental problems. In order to control energy input and reduce carbon emissions, this study first combines a three-stage Slacks-Based Measure with Data Envelopment Analysis (SBM-DEA) and uses the Malmquist index to quantify energy consumption at the city scale and the related carbon emission efficiency in Fujian Province for the period 2015–2020. Second, we explore the carbon reduction potential on the city scale from the perspective of improving carbon emission efficiency. Our results demonstrate that (i) the carbon emission efficiency of the nine cities increases overall in the first stage, when technical efficiency approaches the efficiency frontier state and efficiency shortage is mainly caused by the lack of pure technical efficiency. (ii) Regression by stochastic frontier analysis in the second stage reveals that the secondary industry correlates positively at 1% significance with fossil energy consumption and power consumption, indicating that the carbon emission efficiency decreases as the secondary industry increases. (iii) Putian and Xiamen reduced their carbon emission efficiency in the third stage due to (a) the input redundancy of fossil energy and social power consumption and (b) excessive undesirable output carbon emissions. (iv) There were improvements in carbon emission efficiency peaks in 2015, with Longyan, Ningde, and Sanming improving by about 50%. This improvement then decreased up to the year 2020, when the improvement in the carbon emission efficiency of Ningde and Zhangzhou was 6.02% and 9.50%, respectively, and that of all other cities was less than 1%. Therefore, we suggest that carbon emission reduction in the future can be further improved by improving technology, optimizing industrial structure, and various other ways to further improve carbon emission efficiency.

Funder

Natural Science Foundation of China

Fujian Provincial Project of Science and Technology

Fujian Agriculture and Forestry University innovation fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3