A Tight Coupling Algorithm for Strapdown Inertial Navigation System (SINS)/Global Positioning System (GPS) Adaptive Integrated Navigation Based on Variational Bayesian

Author:

Liu Jiaxin1ORCID,Di Ke1,Peng Hui12,Liu Yu12

Affiliation:

1. Chongqing Key Laboratory of Autonomous Navigation and Microsystems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chongqing Engineering Research Center of Intelligent Sensing Technology and Microsystem, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

Multi-source nonlinear noise exists in the process of multi-source navigation information fusion in long-endurance positioning systems in complex environments. In such engineering applications, the classical Kalman filter (KF) and the extended Kalman filter (EKF) have the phenomena of noise instability and parameter drift, which lead to the divergence of filtering results and reductions in accuracy over long periods of time. Aiming at the above problems, this paper proposes a fusion algorithm of the variational Bayesian (VB) and the cubature Kalman filter (CKF). Firstly, the system is modeled through nonlinear filtering, and the CKF error equation is established by taking the position difference and velocity difference between SINS and GPS as observation variables. Then, to address the problem of poor self-adaptation of the CKF algorithm, the variational Bayesian adaptive estimation method is introduced into the CKF algorithm, and a measurement noise variance estimation model is introduced to the process of time and measurement updates of the CKF algorithm to finally obtain the adaptive VB–CKF algorithm. The simulation results from the experimental platform show that the proposed fusion algorithm improves the combined SINS/GPS system by about 30% in terms of attitude angle accuracy and reduces speed and position estimation errors (RMSE) by about 45%. At the same time, comprehensive experiments on multiple types of sites show that compared with the CKF algorithm, the VB–CKF algorithm improves the positioning accuracy by 10% when the GPS signal is stable and improves the accuracy by about 38% when the GPS measurement noise changes dramatically in complex terrain, which effectively suppresses the accuracy divergence of the CKF algorithm and has high value for engineering applications.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3