Monitoring Intertidal Habitats for Effects from Biosolids Applications onto an Adjacent Forestry Plantation

Author:

Campos Carlos J. A.1ORCID,Berthelsen Anna1,MacLean Fiona1,Floerl Lisa1,Morrisey Don1ORCID,Gillespie Paul1,Clarke Nathan2

Affiliation:

1. Cawthron Institute, Nelson 7010, New Zealand

2. Nelson Regional Sewerage Business Unit, Nelson 7010, New Zealand

Abstract

Stabilised organic solids derived from sewage sludge (“biosolids”) are applied to land as an alternative to disposal as landfill. This study evaluated the long-term effects of biosolids applied to forestry plantations on the adjacent intertidal habitats of Rabbit Island (New Zealand). On this island, biosolids are applied to enhance the growth of trees (Pinus radiata). Shoreline topography, macroalgal cover, sediment grain size, the concentrations of nutrients, trace metals, and faecal indicator bacteria, and benthic infaunal communities were studied in 2008, 2014, and 2019 at twelve intertidal transect sites (four “reference” and eight “application”) adjacent to forestry blocks where biosolids have been applied over a period of 24 years. The sediment composition did not differ significantly between the survey years or between the reference and application sites. Total nitrogen concentrations in the sediments increased over time at some transects, but such increases were not consistent among the application transects. No symptoms of excessive algal growth, sediment anoxia, and hydrogen sulphide odours were observed at most sites. Key infaunal taxa were similar between the reference and application transects. Overall, no long-term adverse changes to intertidal habitats attributed to biosolids application were detected between the reference and application sites. This study shows that biosolids application can co-occur without detectable adverse effects on nearby intertidal environments. In a global context of rising concern over climate change, environmental pollution, and resource scarcity, forest fertilisation with biosolids can facilitate biomass production and soil development while protecting valued coastal ecosystems.

Funder

Nelson Regional Sewerage Business Unit

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3