Construction of Low-Carbon Land Use and Management System in Coal Mining Areas

Author:

Ma Yunxiu1,Xu Zhanjun1

Affiliation:

1. National Experimental Teaching Demonstration Center of Agricultural Resources and Environment, College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

In 2021, the Chinese government set the national development goal of ‘carbon peak and carbon neutrality’. Defining the carbon cycle process of land use is the first step for the implementation of low-carbon land use in coal mining areas. In this study, the carbon income and expenditure of land use in coal mining areas were analyzed theoretically using normative analysis, and thus the corresponding conceptual model of the carbon budget was formed. Concretely, carbon emissions from the coal industry were mainly from two aspects, that is, soil carbon emissions caused by drastic changes in land use in the coal exploration and exploitation stage and greenhouse gas emissions in the coal collection stage. Moreover, carbon in the air is sequestered in the soil when exploration land and mining land were reclaimed into woodland and grassland. Meanwhile, to optimize the utilization of land resources and realize the land low-carbon pattern from the management perspective, the logic system of land low-carbon use management in coal mining areas was explored using normative analysis and literature review. Thus, a complete management system including the management objective, subject, object, means, and implementation guarantee mechanism was built in detail. This study provided ideas for carbon reduction in coal mining areas and laid a decision-making basis for regional low-carbon land use and sustainable development.

Funder

National Natural Science Foundation of China

Research Science Institute of Philosophy and Society of Colleges and Universities in Shanxi Province

Shanxi Provincial Government

Shanxi Province Philosophy and Social Science

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3