Auxiliary Steering Control of Vehicle Driving with Force/Haptic Guidance

Author:

Shi Xiaobo12,Zhao Dingxuan3,Zhong Yuhang3,Chang Jinming3,Ni Tao45,Chen Xiangxian5

Affiliation:

1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Hebei Construction Material Vocational and Technical College, Qinhuangdao 066004, China

3. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

4. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China

5. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

Abstract

The rapid development of the automobile industry has resulted in the development of many vehicles, increased traffic, and frequent accidents. The complexity of road conditions is a major contributor to the occurrence of traffic accidents. Drivers are distracted and hence unable to fully observe all road information and make optimal and timely driving decisions. This study proposes an auxiliary steering control system with force/tactile guidance (ASCFT) and its corresponding control strategy to address this problem. We combined vehicle autonomous path planning based on road condition information and the human–machine sharing control strategy, which integrated the manipulative force of the driver and a virtual guidance force on the steering wheel. Consequently, the ASCFT eliminated the mechanical connection between the steering wheel and the steering wheels in favor of a force/tactile-assisted steering structure, providing the driver with a sense of steering force based on road information. Additionally, we proposed a smooth vehicle trajectory optimization method based on the improved RRT algorithm and a path-following controller based on the forecast information to achieve auxiliary safety driving. The ASCFT’s performance was confirmed through constructing a fixed-base simulator experimental platform with the ASCFT. The results revealed that at the vehicle speed of 60 km/h and a handwheel rotation of 60°, the steering wheel was instantly released and turned back in about 3.5 s. Furthermore, predictive haptic feedback warned the driver of an upcoming obstacle.

Funder

the Key Research and Development Program of Hebei Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3