Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands

Author:

Guanoluisa Richard1,Arcos-Aviles Diego1ORCID,Flores-Calero Marco1ORCID,Martinez Wilmar23ORCID,Guinjoan Francesc4ORCID

Affiliation:

1. Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador

2. Department of Electrical Engineering, ESAT, KU Leuven, Agoralaan gebouw B bus 8, 3590 Diepenbeek, Belgium

3. EnergyVille-Thor Park 8310, 3600 Genk, Belgium

4. Department of Electronics Engineering, Escuela Técnica Superior de Ingenieros de Telecomunicación de Barcelona, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Abstract

Hydropower systems are the basis of electricity power generation in Ecuador. However, some isolated areas in the Amazon and Galapagos Islands are not connected to the National Interconnected System. Therefore, isolated generation systems based on renewable energy sources (RES) emerge as a solution to increase electricity coverage in these areas. An extraordinary case occurs in the Galapagos Islands due to their biodiversity in flora and fauna, where the primary energy source comes from fossil fuels despite their significant amount of solar resources. Therefore, RES use, especially photovoltaic (PV) and wind power, is essential to cover the required load demand without negatively affecting the islands’ biodiversity. In this regard, the design and installation planning of PV systems require perfect knowledge of the amount of energy available at a given location, where power forecasting plays a fundamental role. Therefore, this paper presents the design and comparison of different deep learning techniques: long-short-term memory (LSTM), LSTM Projected, Bidirectional LSTM, Gated Recurrent Units, Convolutional Neural Networks, and hybrid models to forecast photovoltaic power generation in the Galapagos Islands of Ecuador. The proposed approach uses an optimized hyperparameter-based Bayesian optimization algorithm to reduce the forecast error and training time. The results demonstrate the accurate performance of all the methods by achieving a low-error short-term prediction, an excellent correlation of over 99%, and minimizing the training time.

Funder

Research Group of Propagation, Electronic Control, and Networking (PROCONET) of Universidad de las Fuerzas Armadas ESPE and KU Leuven

VLIR-UOS and the Belgian Development Cooperation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3