Preparation and Electrical Properties of Sr-Doped LaFeO3 Thin-Film Conversion Coatings for Solid Oxide Cell Steel Interconnect Applications

Author:

Frangini StefanoORCID,Della Seta LiviaORCID,Paoletti Claudia

Abstract

A study was conducted to explore the effects of Sr doping on the electrical properties of perovskite LaFeO3 thin-film protective conversion coatings grown onto a K41 ferritic stainless steel, a typical interconnect material for intermediate temperature solid oxide cell (SOC) applications. The Sr-doped coatings were prepared in La2O3- and SrO-containing molten carbonate baths with minor added amounts of nitrate salt for accelerated coating formation. For comparison purposes, undoped coatings were obtained using the same carbonate bath, with the only difference being that SrO was replaced by inert MgO. SEM/EDX and XRD analyses were used for coating characterization and confirmed the effective incorporation of Sr but not of Mg into the LaFeO3 layer. Although both the Sr-doped and undoped coatings consisted of a LaFeO3 layer grown above an inner Fe-Cr spinel, the coating thickness of the Sr-doped coating was distinctly higher, approximately 2 µm, which is twice that of the undoped coating. Electrical measurements in terms of Area-Specific Resistance (ASR) were conducted at 700 °C in air and showed that Sr-doping significantly improved the electrical conductivity of the coated K41 steel. Due to the Sr-doping, the ASR values of the coated steel dropped from 60 to 37 mΩ cm2 after 300 h of exposure, in spite of the higher Sr-doped coating thickness. The study concludes that Sr-doped thin-film perovskite coatings appear to be a promising solution for improved SOCs steel interconnect stability at intermediate temperatures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3