Comprehensive Analysis of the Pollutant Characteristics of Gasoline Vehicle Emissions under Different Engine, Fuel, and Test Cycles

Author:

Lv ZongyanORCID,Yang Lei,Wu Lin,Peng Jianfei,Zhang Qijun,Sun Meng,Mao Hongjun,Min Jie

Abstract

Vehicle exhaust emissions have seriously affected air quality and human health, and understanding the emission characteristics of vehicle pollutants can promote emission reductions. In this study, a chassis dynamometer was used to study the emission characteristics of the pollutants of two gasoline vehicles (Euro 5 and Euro 6) when using six kinds of fuels. The results show that the two tested vehicles had different engine performance under the same test conditions, which led to a significant difference in their emission characteristics. The fuel consumption and pollutant emission factors of the WLTC cycle were higher than those of the NEDC. The research octane number (RON) and ethanol content of fuels have significant effects on pollutant emissions. For the Euro 5 vehicle, CO and particle number (PN) emissions decreased under the WLTC cycle, and NOx emissions decreased with increasing RONs. For the Euro 6 vehicle, CO and NOx emissions decreased and PN emissions increased with increasing RONs. Compared with traditional gasoline, ethanol gasoline (E10) led to decreases in NOx and PN emissions, and increased CO emissions for the Euro 5 vehicle, while it led to higher PN and NOx emissions and lower CO emissions for the Euro 6 vehicle. In addition, the particulate matter emitted was mainly nucleation-mode particulate matter, accounting for more than 70%. There were two peaks in the particle size distribution, which were about 18 nm and 40 nm, respectively. Finally, compared with ethanol–gasoline, gasoline vehicles with high emission standards (Euro 6) are more suitable for the use of traditional gasoline with a high RON.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3