Optimum Solar Panel Orientation and Performance: A Climatic Data-Driven Metaheuristic Approach

Author:

Naraghi Mohammad H.ORCID,Atefi Ehsan

Abstract

This study presents an optimization platform based on the climatic data provided by the National Renewable Energy Laboratory (NREL) to determine the optimum solar panel orientation. Our optimization model is simpler to use than the clearness index model since there is no need to calculate the extraterrestrial insolation on a horizontal flat plate and the shape factor. This optimization approach is based on the hourly climatic data. It determines the optimum tilt angle and azimuth angle of a solar panel for the maximum power generation, considering the diurnal variation of climatic conditions. The hourly evaluation of insolation allows setting up a solar panel azimuth angle that responds to the peak power demand. The main data that impacts the solar panel performance consists of the solar direct normal incident (DNI), direct horizontal incident (DHI), global horizontal incident (GHI), ambient temperature, wind speed, and ground albedo, all of which were obtained from the NREL database for over twenty years. The accuracy of the optimization platform introduced in this study is scrutinized by investigating the three locations in the United States with different climatic conditions. The results based on the present optimization model show higher PV power than the general rule of thumb for south-facing panels with title angles the same as the latitude of the location. Moreover, the effect of deviations from optimum panel orientation is discussed to show the versatility of our technique. Our optimization model is easy-to-use, computationally efficient, and capable of being applied to other locations worldwide.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3