Effects of Cofiring Coal and Biomass Fuel on the Pulverized Coal Injection Combustion Zone in Blast Furnaces

Author:

Kim Gyeong-MinORCID,Choi Jae Hyung,Jeon Chung-HwanORCID,Lim Dong-HaORCID

Abstract

CO2 emissions are a major contributor to global warming. Biomass combustion is one approach to tackling this issue. Biomass is used with coal combustion in thermal power plants or with blast furnaces (BFs) because it is a carbon-neutral fuel; therefore, biomass provides the advantage of reduced CO2 emissions. To examine the effect of co-firing on pulverized coal injection (PCI) in BFs, two coals of different ranks were blended with the biomass in different proportions, and then their combustion behaviors were examined using a laminar flow reactor (LFR). The PCI combustion primarily functions as a source of heat and CO to supply the upper part of the BF. To create a similar PCI combustion environment, the LFR burner forms a diffusion flat flame with an oxygen concentration of 26% with a flame temperature of ~2000–2250 K at a heating rate of 105 K/s. The combustion characteristics, such as the flame structure, burning coal particle temperature, unburned carbon (UBC), and CO and CO2 emissions were measured to evaluate their effect on PCI combustion. With the increase in the biomass blending ratio, the brightness of the volatile cloud significantly increased, and the particle temperature tended to decrease. The fragmentation phenomenon, which was observed for certain coal samples, decreased with the increase in the biomass blending ratio. In particular, with an increase in the biomass blending ratio, the optimum combustion point occurred, caused by the fragmentation of coal and volatile gas combustion of biomass.

Funder

Korea Institute of Industrial Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3