Prediction of Oil Recovery Factor in Stratified Reservoirs after Immiscible Water-Alternating Gas Injection Based on PSO-, GSA-, GWO-, and GA-LSSVM

Author:

Andersen Pål ØstebøORCID,Nygård Jan Inge,Kengessova Aizhan

Abstract

In this study, we solve the challenge of predicting oil recovery factor (RF) in layered heterogeneous reservoirs after 1.5 pore volumes of water-, gas- or water-alternating-gas (WAG) injection. A dataset of ~2500 reservoir simulations is analyzed based on a Black Oil 2D Model with different combinations of reservoir heterogeneity, WAG hysteresis, gravity influence, mobility ratios and WAG ratios. In the first model MOD1, RF is correlated with one input (an effective WAG mobility ratio M*). Good correlation (Pearson coefficient −0.94), but with scatter, motivated a second model MOD2 using eight input parameters: water–oil and gas–oil mobility ratios, water–oil and gas–oil gravity numbers, a reservoir heterogeneity factor, two hysteresis parameters and water fraction. The two mobility ratios exhibited the strongest correlation with RF (Pearson coefficient −0.57 for gas-oil and −0.48 for water-oil). LSSVM was applied in MOD2 and trained using different optimizers: PSO, GA, GWO and GSA. A physics-based adaptation of the dataset was proposed to properly handle the single-phase injection. A total of 70% of the data was used for training, 15% for validation and 15% for testing. GWO and PSO optimized the model equally well (R2 = 0.9965 on the validation set), slightly better than GA and GSA (R2 = 0.9963). The performance metrics for MOD1 in the total dataset were: RMSE = 0.050 and R2 = 0.889; MOD2: RMSE = 0.0080 and R2 = 0.998. WAG outperformed single-phase injection, in some cases with 0.3 units higher RF. The benefits of WAG increased with stronger hysteresis. The LSSVM model could be trained to be less dependent on hysteresis and the non-injected phase during single-phase injection.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference59 articles.

1. Review of WAG Field Experience

2. A Note on Revenue Distribution Patterns and Rent-Seeking Incentive;Sadik-Zada;Int. J. Energy Econ. Policy,2018

3. A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3