A Thermohydraulic Performance of Internal Spiral Finned Tube Based on the Inner Tube Secondary Flow

Author:

Li YicongORCID,Qian Zuoqin,Wang Qiang

Abstract

In this article, the BSL k-ω model was chosen as the turbulence model to simulate the heat transfer and flow characteristics of the proposed tubes inserted with internal spiral fins when the Re was set as 3000 to 17,000. The numerical results agreed well with the empirical formula. The average deviations of Nu and f between the simulation results and empirical formula results were 5.11% and 8.45%, respectively. By means of numerical simulation, the impact of three configurational parameters on the thermal performance was studied, namely the pitch P, the height H, and the number N of the internal spiral fins. The results showed that the Nu and f of the internal spiral finned tube were 1.77–3.74 and 3.04–10.62 times higher than those of smooth tube, respectively. PEC was also taken into account, ranging from 1.038 to 1.652. When the Re was set as 3000, the PEC achieved the peak value of 1.652 under the height H of the fins at 5 mm, the number N was 8, and the pitch P was 75 mm. However, with the increase of Re, the effect of pressure drop on the comprehensive performance in the tube was stronger than that of thermal enhancement. However, the PEC gradually decreased as the Re increased from 3000 to 17,000. In addition, the velocity and temperature fields were obtained to investigate the mechanisms of heat transfer enhancement.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3