A Secure Pseudonym-Based Conditional Privacy-Preservation Authentication Scheme in Vehicular Ad Hoc Networks

Author:

Al-Shareeda Mahmood A.ORCID,Anbar MohammedORCID,Manickam SelvakumarORCID,Hasbullah Iznan H.ORCID

Abstract

Existing identity-based schemes utilized in Vehicular Ad hoc Networks (VANETs) rely on roadside units to offer conditional privacy-preservation authentication and are vulnerable to insider attacks. Achieving rapid message signing and verification for authentication is challenging due to complex operations, such as bilinear pairs. This paper proposes a secure pseudonym-based conditional privacy-persevering authentication scheme for communication security in VANETs. The Elliptic Curve Cryptography (ECC) and secure hash cryptographic function were used in the proposed scheme for signing and verifying messages. After a vehicle receives a significant amount of pseudo-IDs and the corresponding signature key from the Trusted Authority (TA), it uses them to sign a message during the broadcasting process. Thus, the proposed scheme requires each vehicle to check all the broadcasting messages received. Besides, in the proposed scheme, the TA can revoke misbehaving vehicles from continuously broadcasting signed messages, thus preventing insider attacks. The security analysis proved that the proposed scheme fulfilled the security requirements, including identity privacy-preservation, message integrity and authenticity, unlinkability, and traceability. The proposed scheme also withstood common security attacks such as man-in-the-middle, impersonation, modification, and replay attacks. Besides, our scheme was resistant against an adaptive chosen-message attack under the random oracle model. Furthermore, our scheme did not employ bilinear pairing operations; therefore, the performance analysis and comparison showed a lower resulting overhead than other identity-based schemes. The computation costs of the message signing, individual signature authentication, and batch signature authentication were reduced by 49%, 33.3%, and 90.2%, respectively.

Funder

Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Survey on Authentication and Attack Detection Schemes That Threaten It in Vehicular Ad-Hoc Networks;IEEE Transactions on Intelligent Transportation Systems;2023-12

2. Systematic Review on the Recent Trends of Cybersecurity in Automobile Industry;2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG);2023-04-05

3. A Multi-tier accredit based security for trustworthiness in VANET's using broadcasting mechanism;2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT);2023-04-05

4. Efficient Authentication Scheme for 5G-Enabled Vehicular Networks Using Fog Computing;Sensors;2023-03-28

5. Enhance Security and Privacy in VANET Based Sensor Monitoring and Emergency Services;Cybernetics and Systems;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3