Abstract
A dual broadband terahertz bifunction absorber that can be actively tuned is proposed. The optical properties of the absorber were simulated and numerically calculated using the finite-difference time-domain (FDTD) method. The results show that when the conductivity of vanadium dioxide is less than σ0=8.5×103 S/m, the absorptance can be continuously adjusted between 2% and 100%. At vanadium dioxide conductivity greater than σ0=8.5×103 S/m, the absorption bandwidth of the absorber can be switched from 3.4 THz and 3.06 THz to 2.83 THz and none, respectively, and the absorptance remains above 90%. This achieves perfect modulation of the absorptance and absorption bandwidth. The physical mechanism of dual-broadband absorptions and perfect absorption is elucidated by impedance matching theory and electric field distribution. In addition, it also has the advantage of being polarization insensitive and maintaining stable absorption at wide angles of oblique incidence. The absorber may have applications in emerging fields such as modulators, stealth and light-guided optical switches.
Funder
Natural Science Foundation of Heilongjiang Province
Project of the Central Government Supporting the Reform and Development of Local Colleges and Universities
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献