A Multi-Omics Approach to Evaluate the Toxicity Mechanisms Associated with Silver Nanoparticles Exposure

Author:

Aragoneses-Cazorla Guillermo,Buendia-Nacarino M. Pilar,Mena Maria L.,Luque-Garcia Jose L.ORCID

Abstract

Silver nanoparticles (AgNPs) are currently used in many different industrial, commercial and health fields, mainly due to their antibacterial properties. Due to this widespread use, humans and the environment are increasingly exposed to these types of nanoparticles, which is the reason why the evaluation of the potential toxicity associated with AgNPs is of great importance. Although some of the toxic effects induced by AgNPs have already been shown, the elucidation of more complete mechanisms is yet to be achieved. In this sense, and since the integration of metabolomics and transcriptomics approaches constitutes a very useful strategy, in the present study targeted and untargeted metabolomics and DNA microarrays assays have been combined to evaluate the molecular mechanisms involved in the toxicity induced by 10 nm AgNPs. The results have shown that AgNPs induce the synthesis of glutathione as a cellular defense mechanism to face the oxidative environment, while inducing the depletion of relevant molecules implicated in the synthesis of important antioxidants. In addition, it has been observed that AgNPs completely impair the intracellular energetic metabolism, especially affecting the production of adenosine triphosphate (ATP) and disrupting the tricarboxylic acids cycle. It has been demonstrated that AgNPs exposure also affects the glycolysis pathway. The effect on such pathway differs depending on the step of the cycle, which a significant increase in the levels of glucose as way to counterbalance the depleted levels of ATP.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3