Novel Modeling Approach to Analyze Threshold Voltage Variability in Short Gate-Length (15–22 nm) Nanowire FETs with Various Channel Diameters

Author:

Lee SeunghwanORCID,Yoon Jun-SikORCID,Lee Junjong,Jeong JinsuORCID,Yun HyeokORCID,Lim JaewanORCID,Lee Sanguk,Baek Rock-HyunORCID

Abstract

In this study, threshold voltage (Vth) variability was investigated in silicon nanowire field-effect transistors (SNWFETs) with short gate-lengths of 15–22 nm and various channel diameters (DNW) of 7, 9, and 12 nm. Linear slope and nonzero y-intercept were observed in a Pelgrom plot of the standard deviation of Vth (σVth), which originated from random and process variations. Interestingly, the slope and y-intercept differed for each DNW, and σVth was the smallest at a median DNW of 9 nm. To analyze the observed DNW tendency of σVth, a novel modeling approach based on the error propagation law was proposed. The contribution of gate-metal work function, channel dopant concentration (Nch), and DNW variations (WFV, ∆Nch, and ∆DNW) to σVth were evaluated by directly fitting the developed model to measured σVth. As a result, WFV induced by metal gate granularity increased as channel area increases, and the slope of WFV in Pelgrom plot is similar to that of σVth. As DNW decreased, SNWFETs became robust to ∆Nch but vulnerable to ∆DNW. Consequently, the contribution of ∆DNW, WFV, and ∆Nch is dominant at DNW of 7 nm, 9 nm, and 12, respectively. The proposed model enables the quantifying of the contribution of various variation sources of Vth variation, and it is applicable to all SNWFETs with various LG and DNW.

Funder

National Research Foundation of Korea

POSTECH-Samsung Electronics Industry-Academia Cooperative Research Center

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3