Novel Gold Nanoparticle-Based Quick Small-Exosome Isolation Technique from Serum Sample at a Low Centrifugal Force

Author:

Pammi Guru Krishna Thej,Sreeja Jamuna Surendran,Dharmapal Dhrishya,Sengupta Suparna,Basu Palash Kumar

Abstract

Exosomes are cell-secreted vesicles secreted by a majority of cells and, hence, populating most of the biological fluids, namely blood, tears, sweat, swab, urine, breast milk, etc. They vary vastly in size and density and are influenced by age, gender and diseases. The composition of exosomes includes lipids, DNA, proteins, and coding and noncoding RNA. There is a significant interest in selectively isolating small exosomes (≤50 nm) from human serum to investigate their role in different diseases and regeneration. However, current techniques for small exosome isolation/purification are time-consuming and highly instrument-dependent, with limited specificity and recovery. Thus, rapid and efficient methods to isolate them from bio fluids are strongly needed for both basic research and clinical applications. In the present work, we explored the application of a bench-top centrifuge for isolating mostly the small exosomes (≤50 nm). This can be achieved at low g-force by adding additional weight to the exosomes by conjugating them with citrate-capped gold nanoparticles (CGNP). CGNPs were functionalized with polyethylene glycol (PEG) to form PEGylated GNP (PGNP). EDC/SNHS chemistry is used to activate the –COOH group of the PEG to make it suitable for conjugation with antibodies corresponding to exosomal surface proteins. These antibody-conjugated PGNPs were incubated with the serum to form PGNP-exosome complexes which were separated directly by centrifugation at a low g-force of 7000× g. This makes this technique efficient compared to that of standard ultracentrifugation exosome isolation (which uses approximately 100,000× g). Using the technique, the exosome isolation from serum was achieved successfully in less than two hours. The purification of small exosomes, characterized by the presence of CD63, CD9 and CD81, and sized between 20 nm to 50 nm, was confirmed by western blot, dynamic light scattering (DLS), transmission electron microscopy (TEM) and nanoparticle tracking analyser (NTA).

Funder

Department of Biotechnology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3