Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials

Author:

Zhao Kai,Hu Yuanzhao,Du Gang,Zhao Yudi,Dong Junchen

Abstract

The resistivity of Cu interconnects increases rapidly with continuously scaling down due to scatterings, causing a major challenge for future nodes in M0 and M1 layers. Here, A Boltzmann-transport-equation-based Monte Carlo simulator, including all the major scattering mechanisms of interconnects, is developed for the evaluation of electron transport behaviors. Good agreements between our simulation and the experimental results are achieved for Cu, Ru, Co, and W, from bulk down to 10 nm interconnects. The line resistance values of the four materials with the inclusion of liner and barrier thicknesses are calculated in the same footprint for a fair comparison. The impact of high aspect ratio on resistivity is analyzed for promising buried power rail materials, such as Ru and W. Our results show that grain boundary scattering plays the most important role in nano-scale interconnects, followed by surface roughness and plasma excimer scattering. Surface roughness scattering is the origin of the resistivity decrease for high-aspect-ratio conductive rails. In addition, the grain sizes for the technical nodes of different materials are extracted and the impact of grain size on resistivity is analyzed.

Funder

National Natural Science Foundation of China

Science and Technology Project of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3