Abstract
The expression of cytokines and chemokines in response to adenovirus infection is tightly regulated by the innate immune system. Cytokine-mediated toxicity and cytokine storm are known clinical phenomena observed following naturally disseminated adenovirus infection in immunocompromised hosts as well as when extremely high doses of adenovirus vectors are injected intravenously. This dose-dependent, cytokine-mediated toxicity compromises the safety of adenovirus-based vectors and represents a critical problem, limiting their utility for gene therapy applications and the therapy of disseminated cancer, where intravenous injection of adenovirus vectors may provide therapeutic benefits. The mechanisms triggering severe cytokine response are not sufficiently understood, prompting efforts to further investigate this phenomenon, especially in clinically relevant settings. In this review, we summarize the current knowledge on cytokine and chemokine activation in response to adenovirus- and adenovirus-based vectors and discuss the underlying mechanisms that may trigger acute cytokine storm syndrome. First, we review profiles of cytokines and chemokines that are activated in response to adenovirus infection initiated via different routes. Second, we discuss the molecular mechanisms that lead to cytokine and chemokine transcriptional activation. We further highlight how immune cell types in different organs contribute to synthesis and systemic release of cytokines and chemokines in response to adenovirus sensing. Finally, we review host factors that can limit cytokine and chemokine expression and discuss currently available and potential future interventional approaches that allow for the mitigation of the severity of the cytokine storm syndrome. Effective cytokine-targeted interventional approaches may improve the safety of systemic adenovirus delivery and thus broaden the potential clinical utility of adenovirus-based therapeutic vectors.
Funder
National Institute of Allergy and Infectious Diseases
Subject
Virology,Infectious Diseases
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献