Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-Forward Neural Networks

Author:

Tran Anh Duong,Duc Dang Thanh,Pham Van Song

Abstract

Rainfall prediction is a fundamental process in providing inputs for climate impact studies and hydrological process assessments. Rainfall events are, however, a complicated phenomenon and continues to be a challenge in forecasting. This paper introduces novel hybrid models for monthly rainfall prediction in which we combined two pre-processing methods (Seasonal Decomposition and Discrete Wavelet Transform) and two feed-forward neural networks (Artificial Neural Network and Seasonal Artificial Neural Network). In detail, observed monthly rainfall time series at the Ca Mau hydrological station in Vietnam were decomposed by using the two pre-processing data methods applied to five sub-signals at four levels by wavelet analysis, and three sub-sets by seasonal decomposition. After that, the processed data were used to feed the feed-forward Neural Network (ANN) and Seasonal Artificial Neural Network (SANN) rainfall prediction models. For model evaluations, the anticipated models were compared with the traditional Genetic Algorithm and Simulated Annealing algorithm (GA-SA) supported by Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA). Results showed both the wavelet transform and seasonal decomposition methods combined with the SANN model could satisfactorily simulate non-stationary and non-linear time series-related problems such as rainfall prediction, but wavelet transform along with SANN provided the most accurately predicted monthly rainfall.

Publisher

MDPI AG

Subject

Psychiatry and Mental health

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid dynamic arithmetic city council optimization for improved rainfall prediction;International Journal of System Assurance Engineering and Management;2024-05-15

2. An Adaptive Salp-Stochastic-Gradient-Descent- Based Convolutional LSTM With MapReduce Framework for the Prediction of Rainfall;International Journal of Interactive Multimedia and Artificial Intelligence;2024

3. A Hybrid Model for Rain Prediction Using Machine Learning Algorithm;Lecture Notes in Networks and Systems;2024

4. Location Agnostic Adaptive Rain Precipitation Prediction using Deep Learning;2023 IEEE 9th International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE);2023-11-25

5. Predictive Analysis of Monthly Flood Variables in the Palangkaraya Area Using Multiple Regression Methods and MLR, NN, KNN, Random Forest, SVM Algorithms;2023 6th International Conference on Information and Communications Technology (ICOIACT);2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3