Abstract
Aiming at the difficulty in real-time measuring and the long offline measurement cycle for the content of cement clinker free lime (fCaO), it is very important to build an online prediction model for fCaO content. In this work, on the basis of Cholesky factorization, the online sequential multiple kernel extreme learning machine algorithm (COS-MKELM) is proposed. The LDLT form Cholesky factorization of the matrix is introduced to avoid the large operation amount of inverse matrix calculation. In addition, the stored initial information is utilized to realize online model identification. Then, three regression datasets are used to test the performance of the COS-MKELM algorithm. Finally, an online prediction model for fCaO content is built based on COS-MKELM. Experimental results demonstrate that the fCaO content model improves the performance in terms of learning efficiency, regression accuracy, and generalization ability. In addition, the online prediction model can be corrected in real-time when the production conditions of cement clinker change.
Funder
Science Technology Research and Development Plan Foundation of Shijiazhuang
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献