Orientation-Dependent Indentation Behaviour of Additively Manufactured FeCo Sample: A Quasi In-Situ Study

Author:

Pramanik SudiptaORCID,Tasche Frederik,Hoyer Kay-PeterORCID,Schaper Mirko

Abstract

The quasi in-situ indentation behaviour of <110>||BD and <111>||BD-oriented grains in a FeCo alloy is studied in this investigation. The effect of build height on melt pool shape and melt pool size is also studied by finite element method simulations. As the building height increases, the aspect ratio of the elliptical melt pool increases. Correspondingly, the effect of the laser scan speed on the melt pool shape and size is studied by the finite element method, because, as the laser scan speed increases, the aspect ratio of the elliptical melt pool increases, too. The microstructural characterisation of the indentation area before and after indentation is performed by electron backscatter diffraction (EBSD). Based on the EBSD data grain reference orientation deviation (GROD), calculations are performed to describe the effect of indentations on the neighbouring grain orientations. High GROD angles are detected in the neighbouring grain region adjoining the indented grain. An in-depth slip trace analysis shows the activation of all three slip systems ({110}<111>, {112}<111> and {123}<111>) which is also confirmed by slip lines on the sample surface that are detected by laser scanning confocal microscopy. A high concentration of geometrically necessary dislocations (GNDs) are observed on the adjoining area to the indentation. Local surface topography measurements by laser scanning confocal microscopy confirmed the formation of pile-ups near the indentation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3