SF-Transformer: A Mutual Information-Enhanced Transformer Model with Spot-Forward Parity for Forecasting Long-Term Chinese Stock Index Futures Prices

Author:

Mao Weifang1,Liu Pin2ORCID,Huang Jixian3ORCID

Affiliation:

1. Business School, Central South University, Changsha 410083, China

2. School of Computer and Engineering, Central South University, Changsha 410083, China

3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Abstract

The complexity in stock index futures markets, influenced by the intricate interplay of human behavior, is characterized as nonlinearity and dynamism, contributing to significant uncertainty in long-term price forecasting. While machine learning models have demonstrated their efficacy in stock price forecasting, they rely solely on historical price data, which, given the inherent volatility and dynamic nature of financial markets, are insufficient to address the complexity and uncertainty in long-term forecasting due to the limited connection between historical and forecasting prices. This paper introduces a pioneering approach that integrates financial theory with advanced deep learning methods to enhance predictive accuracy and risk management in China’s stock index futures market. The SF-Transformer model, combining spot-forward parity and the Transformer model, is proposed to improve forecasting accuracy across short and long-term horizons. Formulated upon the arbitrage-free futures pricing model, the spot-forward parity model offers variables such as stock index price, risk-free rate, and stock index dividend yield for forecasting. Our insight is that the mutual information generated by these variables has the potential to significantly reduce uncertainty in long-term forecasting. A case study on predicting major stock index futures prices in China demonstrates the superiority of the SF-Transformer model over models based on LSTM, MLP, and the stock index futures arbitrage-free pricing model, covering both short and long-term forecasting up to 28 days. Unlike existing machine learning models, the Transformer processes entire time series concurrently, leveraging its attention mechanism to discern intricate dependencies and capture long-range relationships, thereby offering a holistic understanding of time series data. An enhancement of mutual information is observed after introducing spot-forward parity in the forecasting. The variation of mutual information and ablation study results highlights the significant contributions of spot-forward parity, particularly to the long-term forecasting. Overall, these findings highlight the SF-Transformer model’s efficacy in leveraging spot-forward parity for reducing uncertainty and advancing robust and comprehensive approaches in long-term stock index futures price forecasting.

Funder

National Social Science Fund of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3