Transient Receptor Potential Vanilloid 1 Signaling Is Independent on Protein Kinase A Phosphorylation of Ankyrin-Rich Membrane Spanning Protein

Author:

Pellegrino Antonio,Mükusch Sandra,Seitz ViolaORCID,Stein ChristophORCID,Herberg Friedrich W.ORCID,Seitz HaraldORCID

Abstract

The sensory ion channel transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in small to medium sized dorsal root ganglion neurons, which are involved in the transfer of acute noxious thermal and chemical stimuli. The Ankyrin-rich membrane spanning protein (ARMS) interaction with TRPV1 is modulated by protein kinase A (PKA) mediating sensitization. Here, we hypothesize that PKA phosphorylation sites of ARMS are crucial for the modulation of TRPV1 function, and that the phosphorylation of ARMS is facilitated by the A-kinase anchoring protein 79 (AKAP79). We used transfected HEK293 cells, immunoprecipitation, calcium flux, and patch clamp experiments to investigate potential PKA phosphorylation sites in ARMS and in ARMS-related peptides. Additionally, experiments were done to discriminate between PKA and protein kinase D (PKD) phosphorylation. We found different interaction ratios for TRPV1 and ARMS mutants lacking PKA phosphorylation sites. The degree of TRPV1 sensitization by ARMS mutants is independent on PKA phosphorylation. AKAP79 was also involved in the TRPV1/ARMS/PKA signaling complex. These data show that ARMS is a PKA substrate via AKAP79 in the TRPV1 signaling complex and that all four proteins interact physically, regulating TRPV1 sensitization in transfected HEK293 cells. To assess the physiological and/or therapeutic significance of these findings, similar investigations need to be performed in native neurons and/or in vivo.

Funder

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

US National Science Foundation

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3