Modelling Construction Site Cost Index Based on Neural Network Ensembles

Author:

Juszczyk MichałORCID,Leśniak AgnieszkaORCID

Abstract

Construction site overhead costs are key components of cost estimation in construction projects. The estimates are expected to be accurate, but there is a growing demand to shorten the time necessary to deliver cost estimates. The balancing (symmetry) between time of calculation and satisfaction of reliable estimation was the reason for developing a new model for cost estimation in construction. This paper reports some results from the authors’ broad research on the modelling processes in engineering related to estimation of construction costs using artificial intelligence tools. The aim of this work was to develop a model capable of predicting a construction site cost index that would benefit from combining several artificial neural networks into an ensemble. Combining selected neural networks and forming the ensemble-based models compromised their strengths and weaknesses. With the use of data including training patterns collected on the basis of studies of completed construction projects, the authors investigated various types of neural networks in order to select the members of the ensemble. Finally, three models that were assessed in terms of performance and prediction quality were proposed. The results revealed that the developed models based on ensemble averaging and stacked generalisation met the expectations of knowledge generalisation and accuracy of prediction of site overhead cost index. The proposed models offer predictions of cost in an accepted error range and prove to deliver better predictions than those based on single neural networks. The developed tools can be used in the decision-making process regarding construction cost estimation.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3