MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration

Author:

Alves Fabio,Park Jaehyun,McCarty Leland,Rabelo Renato,Karunasiri Gamani

Abstract

A MEMS directional acoustic sensor housed in an air cavity and operated underwater in a near-neutral buoyancy configuration is demonstrated. The sensor consists of two wings connected by a bridge and attached to a substrate by two centrally mounted torsional legs. The frequency response showed two resonant peaks corresponding to a rocking mode (wings moving in opposite directions) and a bending mode (wings moving in the same direction). Initial tests of the sensor using a shaker table showed that the response is highly dependent on the vibration direction. In air, the sensor showed a maximum sensitivity of about 95 mV/Pa with a cosine directional response. Underwater, the maximum sensitivity was about 37 mV/Pa with a similar cosine directional response. The measured maximum SNR was about 38 dB for a signal generated by a sound stimulus of 1 Pa when the sensor is operated near the bending resonance. The results indicate that this type of MEMS sensor can be operated in a near-neutral buoyant configuration and achieve a good directional response.

Funder

Office of the Naval Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3