Towards a Comprehensive Assessment of Statistical versus Soft Computing Models in Hydrology: Application to Monthly Pan Evaporation Prediction

Author:

Zounemat-Kermani Mohammad,Keshtegar Behrooz,Kisi OzgurORCID,Scholz MiklasORCID

Abstract

This paper evaluates six soft computational models along with three statistical data-driven models for the prediction of pan evaporation (EP). Accordingly, improved kriging—as a novel statistical model—is proposed for accurate predictions of EP for two meteorological stations in Turkey. In the standard kriging model, the input data nonlinearity effects are increased by using a nonlinear map and transferring input data from a polynomial to an exponential basic function. The accuracy, precision, and over/under prediction tendencies of the response surface method, kriging, improved kriging, multilayer perceptron neural network using the Levenberg–Marquardt (MLP-LM) as well as a conjugate gradient (MLP-CG), radial basis function neural network (RBFNN), multivariate adaptive regression spline (MARS), M5Tree and support vector regression (SVR) were compared. Overall, all the applied models were highly capable of predicting monthly EP in both stations with a mean absolute error (MAE) < 0.77 mm and a Willmott index (d) > 0.95. Considering periodicity as an input parameter, the MLP-LM provided better results than the other methods among the soft computing models (MAE = 0.492 mm and d = 0.981). However, the improved kriging method surpassed all the other models based on the statistical measures (MAE = 0.471 mm and d = 0.983). Finally, the outcomes of the Mann–Whitney test indicated that the applied soft computational models do not have significant superiority over the statistical ones (p-value > 0.65 at α = 0.01 and α = 0.05).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3