Abstract
There is little knowledge regarding the environmental sustainability of domestic on-site or decentralised wastewater treatment systems (DWWTS). This study evaluated six unique life cycle environmental impacts for different DWTTS configurations of five conventional septic tank systems, four packaged treatment units, and a willow evapotranspiration system. Similar freshwater eutrophication (FE), dissipated water (DW), and mineral and metal (MM), burdens were noted between the packaged and conventional system configurations, with the packaged systems demonstrating significantly higher impacts of between 18% and 56% for climate change (CC), marine eutrophication (ME), and fossils (F). At a system level, higher impacts were observed in systems requiring (i) three vs. two engineered treatment stages, (ii) a larger soil percolation trench area, and (iii) pumping of effluent. The evapotranspiration system presented the smallest total environmental impacts (3.0–10.8 lower), with net benefits for FE, ME, and MM identified due to the biomass (wood) production offsetting these burdens. Further analysis highlighted the sensitivity of results to biomass yield, operational demands (desludging or pumping energy demands), and embodied materials, with less significant impacts for replacing mechanical components, i.e., pumps. The findings highlighted the variation in environmental performance of different DWTTS configurations and indicated opportunities for design improvements to reduce their life cycle impacts.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference44 articles.
1. Urban Waste Water Treatment in Europe,2021
2. Water Energy Nexus,2017
3. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment,1991
4. Interactions between centralized and decentralized water systems in urban context: A review
5. Beyond the Networked City: Infrastructure Reconfigurations and Urban Change in the North and South;Coutard,2015
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献