The Life Cycle Environmental Performance of On-Site or Decentralised Wastewater Treatment Systems for Domestic Homes

Author:

Gallagher JohnORCID,Gill Laurence W.ORCID

Abstract

There is little knowledge regarding the environmental sustainability of domestic on-site or decentralised wastewater treatment systems (DWWTS). This study evaluated six unique life cycle environmental impacts for different DWTTS configurations of five conventional septic tank systems, four packaged treatment units, and a willow evapotranspiration system. Similar freshwater eutrophication (FE), dissipated water (DW), and mineral and metal (MM), burdens were noted between the packaged and conventional system configurations, with the packaged systems demonstrating significantly higher impacts of between 18% and 56% for climate change (CC), marine eutrophication (ME), and fossils (F). At a system level, higher impacts were observed in systems requiring (i) three vs. two engineered treatment stages, (ii) a larger soil percolation trench area, and (iii) pumping of effluent. The evapotranspiration system presented the smallest total environmental impacts (3.0–10.8 lower), with net benefits for FE, ME, and MM identified due to the biomass (wood) production offsetting these burdens. Further analysis highlighted the sensitivity of results to biomass yield, operational demands (desludging or pumping energy demands), and embodied materials, with less significant impacts for replacing mechanical components, i.e., pumps. The findings highlighted the variation in environmental performance of different DWTTS configurations and indicated opportunities for design improvements to reduce their life cycle impacts.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Urban Waste Water Treatment in Europe,2021

2. Water Energy Nexus,2017

3. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment,1991

4. Interactions between centralized and decentralized water systems in urban context: A review

5. Beyond the Networked City: Infrastructure Reconfigurations and Urban Change in the North and South;Coutard,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3