Desialylation of Sonic-Hedgehog by Neu2 Inhibits Its Association with Patched1 Reducing Stemness-Like Properties in Pancreatic Cancer Sphere-forming Cells

Author:

Nath Shalini,Mondal Susmita,Butti Ramesh,Prasanna Gunasekaran Vinoth,Chatterjee Uttara,Halder Aniket,Kundu Gopal C.,Mandal Chitra

Abstract

Cancer stem cells (CSCs) are crucial regulators of tumor recurrence/progression. The maintenance of CSCs is dependent on aberrant activation of various pathways, including Hedgehog. Prevalent sialylations contribute to aggressiveness in CSCs. Here, we have addressed the role of sialylation in regulating stemness-like properties of pancreatic cancer sphere-forming cells (PCS) through modulation of the Hedgehog (Hh) pathway. The status of CD133/CD44/surface-sialylation was checked by flow cytometry and effects of Neu2 overexpression in PCS were compared using qPCR, immunoblotting, co-immunoprecipitation and also by colony-formation assays. The work was also validated in a xenograft model after Neu2 overexpression. Neu2 and Shh status in patient tissues were examined by immunohistochemistry. PCS showed higher Hh-pathway activity and sialylation with reduced cytosolic-sialidase (Neu2). Neu2 overexpression caused desialylation of Shh, thereby reducing Shh-Patched1 binding thus causing decreased Hh-pathway activity with lower expression of Snail/Slug/CyclinD1 leading to reduction of stemness-like properties. Neu2-overexpression also induced apoptosis in PCS. Additionally, Neu2-overexpressed PCS demonstrated lower mTORC2 formation and inhibitory-phosphorylation of Gsk3β, reflecting a close relationship with reduced Hh pathway. Moreover, both Neu2 and Rictor (a major component of mTORC2) co-transfection reduced stem cell markers and Hh-pathway activity in PCS. Neu2-overexpressed tumors showed reduction in tumor mass with downregulation of stem cell markers/Shh/mTOR and upregulation of Bax/Caspase8/Caspase3. Thus, we established that reduced sialylation by Neu2 overexpression leads to decreased stemness-like properties by desialylation of Shh, which impaired its association with Patched1 thereby inhibiting the Hh pathway. All these may be responsible for enhanced apoptosis in Neu2-overexpressed PCS.

Funder

Department of Biotechnology , Ministry of Science and Technology

Science and Engineering Research Board

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3