Author:
Tsai Cheng-Chieh,Tsai Chin-Kun,Tseng Po-Chun,Lin Chiou-Feng,Chen Chia-Ling
Abstract
Cytokines are the major immune regulators secreted from activated CD4+ T lymphocytes that activate adaptive immunity to eradicate nonself cells, including pathogens, tumors, and allografts. The regulation of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase, controls cytokine production by regulating transcription factors. The artificial in vitro activation of CD4+ T lymphocytes by a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin, the so-called T/I model, led to an inducible production of cytokines, such as interferon-γ, tumor necrosis factor-α, and interleukin-2. As demonstrated by the approaches of pharmacological targeting and genetic knockdown of GSK-3β, T/I treatment effectively caused GSK-3β activation followed by GSK-3β-regulated cytokine production. In contrast, pharmacological inhibition of the proline-rich tyrosine kinase 2 and calcineurin signaling pathways blocked cytokine production, probably by deactivating GSK-3β. The blockade of GSK-3β led to the inhibition of the nuclear translocation of T-bet, a vital transcription factor of T lymphocyte cytokines. In a mouse model, treatment with the GSK-3β inhibitor 6-bromoindirubin-3’-oxime significantly inhibited T/I-induced mortality and serum cytokine levels. In summary, targeting GSK-3β effectively inhibits CD4+ T lymphocyte activation and cytokine production.
Funder
Ministry of Science and Technology, Taiwan
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献