Vanadium Extraction from the Flotation Concentrate of Vanadium-Bearing Shale by Process of Non-Roasting Enhanced Acid Leaching and Thermodynamics

Author:

Tang Yue1,Ye Guohua1,Zuo Qi1

Affiliation:

1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

The purpose of this work is to significantly improve the vanadium grade of vanadium-bearing shale after flotation preconcentration, which is conducive to reducing the acid consumption and industrial costs in the subsequently enhanced acid leaching of vanadium. Vanadium concentrate from vanadium-bearing shale enriched by flotation is used for acid-leaching feed. The leaching effects of two kinds of acid-leaching systems were compared, and the mechanism of acid leaching on the mineral structure was also described. The difficulty of spontaneous reactions of vanadium-bearing minerals such as garnet in an acid-leaching system was studied through thermodynamics. Additionally, several characterization methods were used to evaluate the improvement of leaching performance. The addition of oxidants and fluorinating aids strengthens the acid-leaching process, which greatly destroys the structure of a garnet, which is conducive to the extraction of vanadium in a flotation concentrate. The leaching efficiency can reach 94.86%, and the acid consumption is also reduced. Through the mechanism study of the leaching system, it is expected that when the enhanced acid-leaching process is put into industrial production, the effective leaching of vanadium can be accurately controlled, and the difficulty of subsequent vanadium enrichment and purification can be reduced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3