Toward Smart Soil Sensing in v4.0 Agriculture: A New Single-Shape Sensor for Capacitive Moisture and Salinity Measurements

Author:

Escriba ChristopheORCID,Aviña Bravo Eli GabrielORCID,Roux Julien,Fourniols Jean-Yves,Contardo Michel,Acco PascalORCID,Soto-Romero Georges

Abstract

Modern agriculture imposes the need for better knowledge of the soil moisture content to rationalize the amount of water needed to irrigate farmlands. In this context, since current technological solutions do not correspond to the cost or use criteria, this paper presents a design for a new original capacitive bi-functional sensor to measure soil moisture and salinity. In this paper, we outline the design stages from simulation to finished elements of the optimal design to deployment in the fields, considering the mechanical integration constraints necessary for industrialization. The measurement electronics were developed based on the sensor’s electric model to obtain a double measurement. An on-site (field lot) measurement program was then carried out to validate the system’s good performance in real-time. Finally, this performance was matched with that of leading commercially available sensors on the market. This work demonstrates that, after deployment of the sensors, the overall system makes it possible to obtain a precise image of cultivated soil’s hydric condition, with the best response time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3