Detection of Defoliation Injury in Peanut with Hyperspectral Proximal Remote Sensing

Author:

Pinto José,Powell Scott,Peterson Robert,Rosalen DavidORCID,Fernandes Odair

Abstract

Remote sensing can be applied to optimize efficiency in pest detection, as an insect sampling tool. This efficiency can result in more precise recommendations for decision making in pest management. Pest detection with remote sensing is often feasible because plant biotic stress caused by herbivory triggers a defensive physiological response in plants, which generally results in changes to leaf reflectance. Therefore, the key objective of this study was to use hyperspectral proximal remote sensing and gas exchange parameters to characterize peanut leaf responses to herbivory by Stegasta bosqueella (Lepidoptera: Gelechiidae) and Spodoptera cosmioides (Lepidoptera: Noctuidae), two major pests in South American peanut (Arachis hypogaea) production. The experiment was conducted in a randomized complete block design with a 2 × 3 factorial scheme (two lepidopterous species and 3 categories of injury). The injury treatments were: (1) natural infestation by third instars of S. bosqueella, (2) natural infestation by third instars of S. cosmioides, and (3) simulation of injury with scissors to mimic larval injury. We verified that peanut leaf reflectance is different between herbivory by the two larval species, but similar among real and simulated defoliation. Similarly, we observed differences in photosynthetic rate, stomatal conductance, transpiration, and photosynthetic water use efficiency only between species but not between real and simulated larval defoliation. Our results provide information that is essential for the development of sampling and economic thresholds of S. bosqueella and S. cosmioides on the peanut.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference69 articles.

1. Global agriculture towards,2009

2. Vision 2014–2034 The Future of Technological Development in Brazilian Agriculture,2014

3. Increase in crop losses to insect pests in a warming climate

4. Precision Agriculture and Food Security

5. A review of recent sensing technologies to detect invertebrates on crops

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3