Lossy Compression of Multichannel Remote Sensing Images with Quality Control

Author:

Lukin Vladimir,Vasilyeva Irina,Krivenko SergeyORCID,Li Fangfang,Abramov SergeyORCID,Rubel OleksiiORCID,Vozel BenoitORCID,Chehdi Kacem,Egiazarian Karen

Abstract

Lossy compression is widely used to decrease the size of multichannel remote sensing data. Alongside this positive effect, lossy compression may lead to a negative outcome as making worse image classification. Thus, if possible, lossy compression should be carried out carefully, controlling the quality of compressed images. In this paper, a dependence between classification accuracy of maximum likelihood and neural network classifiers applied to three-channel test and real-life images and quality of compressed images characterized by standard and visual quality metrics is studied. The following is demonstrated. First, a classification accuracy starts to decrease faster when image quality due to compression ratio increasing reaches a distortion visibility threshold. Second, the classes with a wider distribution of features start to “take pixels” from classes with narrower distributions of features. Third, a classification accuracy might depend essentially on the training methodology, i.e., whether features are determined from original data or compressed images. Finally, the drawbacks of pixel-wise classification are shown and some recommendations on how to improve classification accuracy are given.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peculiarities of Classification of Lossy Compressed Multichannel Remote Sensing Images Using Trained Neural Networks;Lecture Notes in Electrical Engineering;2024

2. A simple and reliable approach to providing a visually lossless image compression;The Visual Computer;2023-09-02

3. Big spatial data modeling using data cube based on discrete global grid system;Geodesy and Cartography;2023-07-20

4. Strange Images in Remote Sensing and Their Properties;Ukrainian journal of remote sensing;2023-06-29

5. On Visually Lossless JPEG Image Compression;2023 Zooming Innovation in Consumer Technologies Conference (ZINC);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3