Number of Building Stories Estimation from Monocular Satellite Image Using a Modified Mask R-CNN

Author:

Ji Chao,Tang HongORCID

Abstract

Stereo photogrammetric survey used to be used to extract the height of buildings, then to convert the height to number of stories through certain rules to estimate the number of stories of buildings by means of satellite remote sensing. In contrast, we propose a new method using deep learning to estimate the number of stories of buildings from monocular optical satellite image end to end in this paper. To the best of our knowledge, this is the first attempt to directly estimate the number of stories of buildings from monocular satellite images. Specifically, in the proposed method, we extend a classic object detection network, i.e., Mask R-CNN, by adding a new head to predict the number of stories of detected buildings from satellite images. GF-2 images from nine cities in China are used to validate the effectiveness of the proposed methods. The result of experiment show that the mean absolute error of prediction on buildings whose stories between 1–7, 8–20, and above 20 are 1.329, 3.546, and 8.317, respectively, which indicate that our method has possible application potentials in low-rise buildings, but the accuracy in middle-rise and high-rise buildings needs to be further improved.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference22 articles.

1. Study on 3D Reconstruction for City Buildings Based on Target Recognition and Parameterization Technology;Ning,2013

2. IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network;Mou;arXiv,2018

3. U-IMG2DSM: Unpaired Simulation of Digital Surface Models With Generative Adversarial Networks

4. Shadow detection and building-height estimation using IKONOS data

5. Satellite images analysis for shadow detection and building height estimation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3